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Let X be a random variable whose distribution is unimodal with mean u.

For r > 0, let Ar = RIX - ,,r}l/r . In this paper, we determine a value kr

such that

P(IX - P1 a kAr) S [r/(r + 1)]r .k r

for all k k kr' This improves and extends a recent result of Vysochmskii

and Petunin (1979) who have only considered the case r = 2 with a higher

value for k2. Our proof is also considerably simpler because it uses the

convex structure of the class of unimodal distributions.
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1. Introduction.

Let X be a real random variable with moan U and let r > 0. Markov's

inequality states that, for every given a and every k > 0,

(1.1) P(JX - al a k) : E(jX - alr)Ikr.

If a a u and r a 2, (1i) reduces to the usual Tchebyshev inequality. Suppose

now that the distribution of X is unimodal with a mode M. A result attributed

to Gauss (1821) states that

(1.2) P(dX - MI a k). < (4/9) E (IX - M152)/k 2 ,

for all k : 0. In other words, if a = M, the bound on the right side of (1.1)

can be reduced by a factor (4/9) when r a 2. As a consequence, if the dis-

tribution of X is both symmetric and unimodal, then M • i and (1.2) gives

(1.3) P(IX - II > k) 4a 21(9k 2),

where o2 s Var (X). Recently, Vysochndt U.and Petunin (1979) showed that

(1.3) is valid without the assumption of symmetry as long as k a Ora. In this

paper, we first obtain the factor by which the bound in (1.1) can be improved

if the distribution is unimodal and a = M. We then show that the improved bound

is valid even if a • z as long as k is suitably large. For r = 2, we need

k a VOT, which is better than the value 47 obtained by Vysocanskii and

Petuiin.

2. Preliminaries.

In this section we give some results on certain convex sets of distributions.

DEFINITION 2.1. A distribution function F is said to be unimodal about a

mode M if F is convex on I - , 14 and concave on (M, -).
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Let CH denote the set of all distributions on R that are animodal about 1.

Then CN is clearly convex (under mixtures). It is also closed under weak

con.ergence; see Gnedenko and Kolmogorev (1968), Section 32. Let %N denote

the set of all uniform distributions on intervals with M as one end point.

Then Ct4 is the closed convex hull of UM. Another equivalent statement of this

result is as follows; (see Feller (1971), p. 158].

THEOREM 2.1 . A random variable X has a unimodal distribution with mode

M if. and only if. X is distributed as M + UZ, where U is uniform on (0, 1)

and U, Z are independent.

This theorem enables one to reduce many problems involving uninodal

distributions to those involving uniform distributions.

Let V denote the set of all distributions on R which have mean p and

finite support. The following lema is possibly known.

LEW I. 2.1. Every distribution in % is a finite convex mixture of one or

Proof. Without loss of generality, let P a O. Let P c Do and let v be

the size of the support of P. The lemm8 holds if v 9 2. Suppose the lema

holds for v S n, where n a 2. Let Y be a random variable with distribution

P and suppose Y takes exactly (n * 1) values. Since Y is not degenerate and

E(Y) a O, we can find a -0 such that

- P(Y a -a) 2 0 and n a P(Y a b) • 0.

Without loss of generality, assume that &C & bn. Consider the two-point

distribution P0 which puts mass a/(a + b) at the point b mws b/(a b) at

the point (-a). Then Po has zero man and
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(2.1) PwPo  (1- a)P,

where a u n(a , b)/a. Note that a PO accounts for all the mass at b. It is

clear that a : 0. On the other hand, since Y takes at least 3 values, we

must have C n 1 1. Therefore

n(a * b) u an + bn I an + a& n a(C + n) < a. Thus a < 1.

The quantity P1 in (2.1) is a distribution which puts positive massat n points,

since the mass at b is accounted for by aP0 . By the induction hypothesis, P1

is expressible as a mixture of one or two point distributions with zero mean.

Therefore, by (2.1), P also can be expressed as a mixture of the required type.

The proof of the lemma is now complete.

The following lemna is standard.

LEM4A 2.2. W r > 0 and let X be a real random variable with E(IXjr) <a.

Than we find a seaunce of random yriables X such that each Xn takes only a

finite number of values and E(IXn - Xlr) l 0. Moreover, if r 2 1, then we

can shoose the X in such a way that E(Xn ) a E(X) for all n.

3. The Gauss-Tchebyshev inequality,

The Markov inequality states that

(3.1) P(IX - al Z k) 9 -cIX - alr)/kr,

where X is a real rand variable, a e R, r > 0 and k > 0. If a E(X) and

r w 2, (3.1) gives the usual Tchebyshev inequality. If X has a distribution

which is unimodal about M, then the bound on the right side of (3.1) can be

reduced by a factor which depends on r. This is made precise by Theorem 3.1.

below. For the special case r a 2, Theorem 3.1 goes back to Gauss (1821).



THEOREM 3.1. X X have a distribution which is unioidl about N. Then

for every 7p 0 and every k > 0,

(3.2) P(IX -MI a k) r (EIX - .r)

Moreover, this bound is sharp.

Proof; Without loss of generality, let M a 0. Since (3.2) is trivially true

if Elxjr _., we assume that EjXjr < -. Since X is unimodal about zero, by

Theorem 2.1, X has the same distribution as UZ, where U is uniform on (0, 1)

and U, Z are independent. Now EIxIr - E(lZl)/(r + 1). Therefore Elzlr < _.

Lem 2.2 shows that it is sufficient to establish (3.2) in the case where Z

takes only a finite number of values. Now the set of distributions of Z, for

which (3.2) is valid, is clearly convex. Therefore we need only consider the

case where Z is degenerate. Finally, (3.2) is clearly unaffected by a change

of scale. Therefore we may and do assume that Z is degenerate at 1, so that

X has the uniform distribution on (0, 1). In this case, EXjr - l/(r 4 1) and

(I- k), if 0c k 9 1
P(IX a k)

d 0 ifk al.

Therefore

krP(IX > k) k) if 0 k 1I
0 if k k1.

For fixed r, the last quantity becomes maxiim when k a r/(r . 1). The maximam

value is rr/(r . 1)r. 1 Therefore

krP(IxI a k S r )r I " r ) x

which proves (3.2). Further the above calculation shows that the boumd is

sharp.
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The special case r = 2 gives the Gauss isequality.

COROLLARY 3.1. (Gauss). If X has a distribution which is unimodal about

M, then, for all k > 0,

P(IX - NJ k k) : 4 E(JX - M,2)/(9k 2

COMOLLARY 3.2. Let X have a symmetric and unimodal distribution. Let

U E(X) and a2 a Var(X). Then, for all k > 0,

(3.3) P(IX - ul 2 k) : 4/(9k2).

Proof. lamediate from corollary 3.1, because M .

RecentlyVysochanskii and Petunin (1979) showed that (3.3) holds for

unimodal random variables without the assumption of symmetry provided that

k z vT73. We improve and generalize their results below (Theorem 3.2).

Our proof is also considerably simpler because we use the convex structures

introduced in Section 2.

THEOREM 3.2. Let X have a unimodal distribution with man u. Let

T E(IX - U1r). Then for every k D 0,

P(IX - Ua a k) i max J -k r -,r-

Proof. Without loss of generality assume that u a 0. Suppose X is

unimodal about H. If 0 is also a mode of X, then the theorem follows from

4Theorem 3.1. So, suppose that X is not unimodal about 0. Again, we way assume

that M • 0. By Theorem 2.1, X has the saw distribution as M UZ, where

is uniform on (0, 1) and U, Z are independent. Now 0 EM M + E(Z).
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Therefore E(Z) n -2M. It is clear from Lrea 2.2 that it is sufficient to

prove the theorem in the case where Z takes only a finite number of values.

Moreover, since the man of X is fixed at 0, the class of distributions of X

for which the theorem holds is convex. Therefore the second assertion of

Lev 2.2 and Lema 2.1 show that it is sufficient to prove the theorem in the

case where Z takes exactly two values. We have thus reduced our problem to

the case where X has the density f given by

a ,if -a < x - b,

f(x)- B , if b < x < c,

iL 0 , elsewhere

Here a, b, c are suitable positive constants. A graph of f is given in Fig. 1.

Since f is not to be unimodal about 0, we must have a < 0. Further the

condition E(X) a 0 requires that b < c c a. Three cases arise.

Case 1. Suppose 0 < k < b. Here P[JXJ < k] ,, 2k and so

r 2akr. krP[Ixl -c k]
(3.4) Ittlrf(t)dt W

Itl'k (r r)

Case 2. Suppose b < k < c. Her

P[Ixl < k) - a(b + k) + O(k - b),

and

Ittlf(t)dt br1A l+ k l-rl

tA. --
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Simple algebraic manipulations yield

(3.5) It Irf(t)dt - fr " (-k) "krb

Since a < 6 and 0 < b < k, the right side of (3.S) is positive.

Consider the two cases together. That is, let 0 < k < c.

Then (3.4) and (3.5) show that

r
(3.6) 1 Iti Tf(t)dt > CrP "

It <k

Now

T E Xl Itlrf(t)dt . Itlrft)dt

a krp[IXlk] . krP[IXkl in (3.6)].

writing P[Ixi < k] - 1 - P[Ixi > k]. we get

T a:k' (J-) P*-[~ I 1&k] *
T r  r ]

Therefore

CTr+l) r-kr

(3.7) P[Ixj 2:k] : - r

Case 3. Suppose that c < k. Define a new density g as follows.

Y , ifx0 < X < C,
g(x) f f(x) , elsewhere



Since g agrees with f outside the interval (0, c), the constant y must satisfy

(3.8) yc - f(t)dt u ab + B(c-b).

Now let 6r  I Itrg(t)dt. Thon

°Or~l) (Tr- 6 ) - (r~l) [fct'f(t)dt - Jct'g(t)dt]

0 0

a obr l * +(crTl-brl) _ ycr~l

a abr ~l + O(cr l-b r l) - cr[ab+B(c-b)], fusing (3.8)]

* b(O-*) (cT - bT).

Since a < B and 0 < b < c, we see that 6 ! T . Let Y be a random variable
r r

with density g. Since g is unimodal about 0, Theorem 3.1 shows that

-l r r .T ri ~ ~PYI a k) <9 €kr <

But since k > c, the densities g and f agree on the set

(-, -k] u [k, -). Therefore

(3.9) P[IXI Z k] P[IYI > k) ! (rr r

The theorem now follows from (3.7) and (3.9).

COROLLARY 3.3. Let X be a unimodal random variable with mean u. Let

-(E(IX-,tr))lr. Then. for every k > 0,
P(lx-jij a k rJ max t rl) 'kr "*
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Proof. Imewdiate from Theorem 3.2, if we replace k by k r and note r rrr r

Observe that

rlr-kr rr
! (v-- whenever k a k where

r v.00

r~l) r l -r l I/ r

(3.10) kr r

Therefore, the following corollary is imdiate.

COROLLARY 3.4. With the same notation as in Corollary 3.3,

r r -rpcjX a kA1,) k-

for all k a k r, where kr is given by (3.10).

For a comparison of our results with those given by VW'ochi&Ul ad

Petunin, we write the special cases of the last two corollaries when r * 2.

COROLLARY 3.5. Let X be a unimodal random variable with mean p and

variance a .Then, for every k > 0,

T-k2
(3.11) P(Ix - l a kao) , max 2 .

Consequently, for every k 2 A1/3,

4

(3.12) P(jx - :a ko) 4 .
9k

Proof. We only need to note that k2 A '9/3.

REMARK. The inequality (3.11) is an improvement of the result of Vysehahkii

and Petunin (1979). They have (4-k2 )/3 in place of our 3-k2/2. Consequently,

they prove (3.12) for all k a 473.
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It is to be noted that (3.12) does not hold for all k - 0, if the

distribution is not symmetric. The following detailed analysis of the example

considered by Vysqchsa*M and Petunin shows that (3.12) can fail if k a 1.385.

We note that 1.385 < 0-73.

EXAMPLE 3.1. Let a a 1 and consider a random variable X such that

P(X- 1) (a- 1)/a, 1)

and

P(X Cx) 2(x +1)/(a 1)2, -a < x < 1.

It is easy to check that u a E(X) • 0 and

a2 , Var(X) a (2a - 1)/3. Now

a - 1,2(a 1) (a 1) (a 3
POjx X1Zl) + -

(a. 1) (a.)

We now set ka • 1. That is, k a (1/a). Then

k 2POX i i ka) -U (Ixl a l)

- g(a), say

(2a - 1) (a * 1)

The condition g(a) > (4/9) reduces to.

(3.13) 8a 3 - 15a2 -54a + 77 c O.

Numerical calculations show that (3.13) holds for 1.2816 S a 1 3.05. Since

k a a 1 , we see that (3.12) can fail if .767 S k 9 1.385.
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